Surf zone surface retention on a rip-channeled beach

نویسندگان

  • A. J. H. M. Reniers
  • J. H. MacMahan
  • E. B. Thornton
  • T. P. Stanton
  • M. Henriquez
  • J. W. Brown
  • J. A. Brown
  • E. Gallagher
چکیده

[1] The retention of floating matter within the surf zone on a rip-channeled beach is examined with a combination of detailed field observations obtained during the Rip Current Experiment and a three-dimensional (3-D) wave and flow model. The acoustic Doppler current profiler–observed hourly vertical cross-shore velocity structure variability over a period of 3 days with normally incident swell is well reproduced by the computations, although the strong vertical attenuation of the subsurface rip current velocities at the most offshore location outside the surf zone in 4 m water depth is not well predicted. Corresponding mean alongshore velocities are less well predicted with errors on the order of 10 cm/s for the most offshore sensors. Model calculations of very low frequency motions (VLFs) with O(10) min timescales typically explain over 60% of the observed variability, both inside and outside of the surf zone. The model calculations also match the mean rip-current surface flow field inferred from GPS-equipped drifter trajectories. Seeding the surf zone with a large number of equally spaced virtual drifters, the computed instantaneous surface velocity fields are used to calculate the hourly drifter trajectories. Collecting the hourly drifter exits, good agreement with the observed surf zone retention is obtained provided that both Stokes drift and VLF motions are accounted for in the modeling of the computed drifter trajectories. Without Stokes drift, the estimated number of virtual drifter exits is O(80)%, almost an order of magnitude larger than the O(20)% of observed exits during the drifter deployments. Conversely, when excluding the VLF motions instead, the number of calculated drifter exits is less than 5%, thus significantly underestimating the number of observed exits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surf zone diffusivity on a rip-channeled beach

[1] Absolute and relative diffusivity are measured on a rip-channeled beach using 30 position-tracking drifters released in clusters (4–12 drifters) deployed on 7 days with different wave forcing and tidal elevations at Sand City, Monterey Bay, California. Diffusivity and dispersion were found to be larger on days with rip current flow patterns and larger waves. Rip currents cause material to d...

متن کامل

Numerical simulations of larval transport into a rip-channeled surf zone

Competent larvae of intertidal invertebrates have to migrate toward shore for settlement; however, their migration through the surf zone is not understood. We investigated larval transport mechanisms at a ripchanneled beach. Because tracking larvae in the surf zone is infeasible, we used a three-dimensional biophysical model to simulate the processes. The coupled model consists of a physical mo...

متن کامل

Scaling surf zone turbulence

[1] Turbulence in the surf zone, the shallow region adjacent to the shoreline, has a key role in beach erosion, fertilization, dispersal, and larval settlement of marine invertebrates, and microbial contamination dilution in beach waters. Breakingwave generated (the dominant source) surf zone turbulence is understood poorly. A new surf zone turbulent dissipation rate scaling is derived, that co...

متن کامل

Numerical Modeling of Onshore Plankton Transport

Cross-shore exchange of plankton plays an important role in marine ecosystems and coastal communities. Larvae of many intertidal invertebrate species grow offshore and come back to the shore for settlement by crossing the energetic surf zone; however, shoreward transport mechanisms are not well understood. To test the possible onshore transport mechanisms, numerical simulations were performed b...

متن کامل

Beach Profile Equilibrium and Patterns of Wave Decay and Energy Dissipation across the Surf Zone Elucidated in a Large-Scale Laboratory Experiment

WANG, P. and KRAUS, N.C., 2005. Beach profile equilibrium and patterns of wave decay and energy dissipation across the surf zone elucidated in a large-scale laboratory experiment. Journal of Coastal Research, 21(3), 522–534. West Palm Beach (Florida), ISSN 0749-0208. The widely accepted assumption that the equilibrium beach profile in the surf zone corresponds with uniform waveenergy dissipatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009